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Old topic, new shoes
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Before any crossmatch, verify the Equinox of the reference systems  
and the corresponding Epochs (if proper motion is not negligible)!

Crossmatch of celestial objects:!

🕝 Since a long time ago!

📚 Useful to combine information:!

❖ Different wavebands!
❖ Epochs (time series)!
❖ Results (periodicity, classification, etc.) 

Simple positional method (e.g. the nearest 
neighbour within a few arcsec, possibly dropping 
cases with multiple neighbours for safety):!

😀 Many correct matches!

😟 An embarrassing number of incorrect  
     matches!

Problem:!
❖ Ground-based positional uncertainties can 

be large!
❖ Proper motion (not always available)!
❖ Gaia may split some blended sources !
❖ Survey-specific artefacts (spurious 

sources)!
❖ Variability signal (e.g. eclipsing binaries, 

long period variables)!
❖ Ever growing number of sources 
 

     Solution: an “intelligent” crossmatch (AI)



Machine learning in the Variability 
Processing and Analysis of Gaia 
data:!

❖ Crossmatch* (Richards et al. 2012) !
❖ Variability detection!
❖ (Multi-)periodicity identification!
❖ Classification (variability types)!
❖ and more… 

Crossmatch: typical task of a 
binary classifier (match, non-match)!

❖ Automate decisions we would 
do by visual inspections (with 
multiple sources of information)!

❖ Apply to millions of objects 
 
 
 

*Not related to the crossmatch in the Gaia Archive (http://archives.esac.esa.int/gaia/)

Crossmatch by supervised classification
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http://archives.esac.esa.int/gaia/


Classifier pros
🎨 Variety of attributes: position, mean  
     photometry, colours, time-series features, 
     catalog attributes, etc.!

📐 Better than a single multi-dimensional  
     metric, because:!

❖ Robust to inaccurate components!
❖ It does not have to depend on (often 

imperfect) uncertainties!
❖ It adapts to the data, not theoretical 

expectations!

🌈 Different photometric bands can be  
     compared directly without a-priori  
     transformations (ingredients included  
     as attributes)!

🌓 If mix of similar/dissimilar features:!
❖ Train as a match (if dissimilar features 

are not relevant)!
❖ Train as a non-match (e.g., no interest 

in an eclipsing binary without eclipse)!

🌠 Recover matches with low positional  
     accuracy or significant proper motion  
     without knowledge of positional errors or 
     models of the object motion!

🏁 It returns a score of crossmatch reliability
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🏃 Results depend on training!

❖ Proper training (see later)!
❖ Check misclassifications!
❖ Iterate!

🏃🏃 Every survey is unique  
    (attributes, bands, sampling):  
    train a separate classifier  
    for each catalog !

🏃🏃🏃 Multiple classifiers  
        (training sets) per survey:!

❖ Select easy matches first!
❖ Dedicated classifier(s) for 

the difficult cases  

⌛️ Time ~ 1 day / catalog  
     (for < 1000 targets, visual  
     confirmation of matches is faster)
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Classifier cons



9 STEPS TO!
CROSSMATCH!

WITH A!
CLASSIFIER
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1. Define the purpose
Classifier adapted to purpose:!

✨ Training classification of variables!
❖ Signal shape is relevant (no eclipsing binary without 

eclipse)!
❖ Match probability > 0.5!

🌐 Completeness "
❖ May limit to position, mag, color: no dependence on signal 

shape or time series sampling!
❖ Match probability < 0.5
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❖ Neighbours within 5 arcsec (or more)!
• Positional accuracy!
• Proper motion!

❖ Database queries (PostgreSQL, Q3C spatial indexing)

2. Find neighbours
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Koposov & Bartunov, ADASS XV



3. Compute attributes
Attributes for targets and all 
their neighbours:!
❖ Angular separation!
❖ Magnitude (difference)!
❖ Color (difference)!
❖ Number of observations!
❖ Amplitude!

❖ Various statistics!
❖ Correlations!
❖ Parameters on folded 

light-curves (if periods 
are known)!

❖ Survey attributes!
❖ etc…
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A. Good representation of 
variability types, colours, 
magnitudes, sampling, 
artefacts, separation 
distances, data quality!

B. Not only the obvious 
cases: teach the classifier 
as many challenging 
decisions as possible!

C. Embed all the reasons 
which drive decisions 
during visual inspections !

D. Check misclassifications 
(false positives/negatives) 
and improve their correct 
representation until they 
are in the “grey region”  
(acceptable mistakes)
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4. Select training set sources
For both match and non-match classes



Training set (match/non−match)
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4. Select training set sources
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5. Optimise classifier
!

❖ Select useful (not just important) attributes!
❖ Optimise classifier (tuning parameters)!
❖ Assess classifier (confusion matrix)
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Attribute selection
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Classifier assessment
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6. Classify (match / non-match)
❖ Techniques for missing attribute values!
❖ Predict on data to crossmatch!
❖ Assumed only one match for each target and vice-versa  
 

Multiple matches per target?  
Take the one with the highest probability 
 

Among the selected matches, if more than one is associated 
with the same target, different options possible (e.g., the 
highest probability first)
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Matches in crowded fields
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7. Assess results
Verify:!

❖ Prediction statistics!
❖ Low-probability matches!
❖ Low-probability non-matches!
❖ Farthest matches!
❖ Nearest non-matches!

❖ Feed incorrect classifications back to the training set!
❖ Iterate steps 4 to 7 (until misclassifications are acceptable)
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8. Sanity checks
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9. Difficult cases
Repeat steps 4 to 8:!
❖ Train additional classifier(s) dedicated to difficult cases 

(if needed)!
❖ Reclassify low-probability matches and all non-matches
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Mostly around the South Ecliptic Pole (near the Large Magellanic Cloud):!
❖ The OGLE4 GSEP variable stars (Soszynski+ 2012)!
❖ The OGLE4 GSEP constant star candidates (OGLE4/GSEP/maps)!
❖ The OGLE4 Cepheids (Soszynski+ 2015)!
❖ The OGLE3 variable stars (Udalski+ 2008)!
❖ The EROS2 periodic variable stars (Kim+ 2014)!
❖ High-confidence (99%) SDSS photometric quasar candidates with 

radio and/or X-ray association (in the Half Million Quasar catalog, 
Flesch 2015)!

❖ Confirmed planetary transits (Southworth, as of Aug. 2015)

!20

Surveys crossmatched with Gaia



Crossmatch with Gaia sources sampled by at least 10 Field-of-View transits in the G band 

Surveys crossmatched with Gaia
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XM results per type and match probability
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Matches near the South Ecliptic Pole (SEP)!
[preliminary data, subset of data release 1]
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Variable star matches used in the Gaia data release 1

Equatorial Coordinates (deg)
Eyer et al. (submitted)
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